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Abstract.

Water vapour is the most abundant natural greenhouse gas in the Earth’s atmosphere and global data sets are required

for meteorological applications and climate research. The Tropospheric Ozone Monitoring Instrument (TROPOMI) onboard

Sentinel 5 Precursor (S5P) launched on 13 October 2017 has a very high spatial resolution of around 5 km and a daily global

coverage. Currently, there is no operational total water vapour product for S5P measurements. Here, we present first results5

of a new scientific total column water vapour (TCWV) product for S5P using the so-called Air Mass Corrected Differential

Optical Absorption Spectroscopy (AMC-DOAS) scheme. This method analyses spectral data between 688 and 700 nm and has

already been successfully applied to measurements from the Global Monitoring Experiment (GOME) on ERS-2, the Scanning

Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on Envisat and GOME-2 on MetOp.

The adaptation of the AMC-DOAS method to S5P data especially includes an additional post-processing procedure to cor-10

rect the influences of surface albedo, cloud height and cloud fraction. The quality of the new S5P AMC-DOAS water vapour

product is assessed by comparisons with data from GOME-2 on MetOp-B retrieved also with the AMC-DOAS algorithm

and with four completely independent data sets, namely re-analysis data from the European Centre for Medium range Weather

Forecast (ECMWF ERA5), data obtained by the Special Sensor Microwave Imager and Sounder (SSMIS) flown on the Defense

Meteorological Satellite Program (DMSP) platform 16 and two scientific S5P TCWV products derived from TROPOMI mea-15

surements. Both are recently published TCWV products for S5P provided by the Max Planck Institute for Chemistry (MPIC)

in Mainz and the Netherlands Institute for Space Research (SRON), Utrecht. The SRON TCWV is limited to clear sky scenes

over land.

These comparisons reveal a good agreement between the various data sets but also some systematic deviations between all

of them. On average, the derived offset between AMC-DOAS S5P TCWV and AMC-DOAS GOME-2B TCWV is negative20

(around -1.5 kg m−2) over land and positive over ocean surfaces (more than 1.5 kg m−2). In contrast, SSMIS TCWV is on

average lower than AMC-DOAS S5P TCWV by about 3 kg m−2.

TCWV from ERA5 and S5P AMC-DOAS TCWV comparison shows spatial differences over both land and water surface.

Over land there are systematical spatial structures with enhanced discrepancies between S5P AMC-DOAS TCWV and ERA5
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TCWV in tropical regions. Over sea, S5P AMC-DOAS TCWV is slightly lower than ERA5 TCWV by around 2 kg m−2. The

S5P AMC-DOAS TCWV and S5P TCWV from MPIC agree on average within 1 kg m−2 over both land and ocean. TCWV

from SRON shows differences to AMC-DOAS S5P TCWV of around 1.2 kg m−2. All of these deviations are in line with the

accuracy of these products and with the typical range of deviations of 5 kg m−2 obtained when comparing different TCWV

data sets.5

The AMC-DOAS TCWV product for S5P provides therefore a valuable new and independent data set for atmospheric

applications which also shows a better spatial coverage than the other S5P TCWV products.

1 Introduction

As the most abundant natural greenhouse gas, water vapour has a strong impact on the energy balance of the atmosphere. Its

absorption of the upwelling thermal infrared radiation from the earth and the incoming solar radiation warms the atmosphere.10

Water vapour has a twice as strong greenhouse heating effect as carbon dioxide (Mitchell, 1989; Kiehl and Trenberth, 1997).

Water vapour evaporates from the ocean and fresh water and also from vegetation and moist soil. When it condenses in the

atmosphere to form clouds it releases latent heat.

The amount of water vapour in the atmosphere is limited by the saturated vapour pressure which depends on the temperature.

Thus changes in temperature will result in an altered water vapour loading. An increasing atmospheric temperature leads to15

an increase in water vapour saturation pressure which is given by Clausius-Clapeyron equation. In a warming climate there

is more evaporation and thus the water vapour content in the atmosphere increases. This leads to a stronger absorption of

outgoing long wave radiation, emitted from the earth’s surface, and to an increase of temperature in the atmosphere. However,

the scattering of clouds of the incoming solar electromagnetic radiation cools the surface (Boucher et al., 2013). Overall this

feedback mechanism is complex. Enhanced water vapour amounts will also affect the amount and strength of precipitation. As20

a consequence, the strength or amplitude of the hydrological cycle is also affected (Allan et al., 2014) Water vapour also plays

an important role in atmospheric chemistry. In the atmosphere it is a source of the most important oxidizing agent, the free

radical hydroxyl, OH.

In summary to understand the physics and chemistry of the atmosphere, the changing hydrological cycle and climate, it is

essential to know the global distribution of water vapour and its changes with time.25

One of the most accurate methods to determine water vapour concentrations are in-situ measurements from radiosondes,

which provide atmospheric profiles of various atmospheric constituents at selected locations. These sites are distributed glob-

ally, but most of them are on land. However, radiosondes measure local conditions and any network of such sondes is intrin-

sically sparse. The latter cannot fully capture the high spatial and temporal variability of water vapour from the local to the

global scale.30

Total column water vapour (TCWV) is also retrieved using the Global Positioning System (GPS) satellite signals in com-

bination with local GPS ground stations (Bevis et al., 1992; Rocken et al., 1993, 1995). One advantage is the temporal high
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resolution. They yield TCWV for all weather conditions. In contrast, the spatial coverage is quite poor due to the limited

amount of ground based receivers.

Another important part of the global observing system for water vapour are measurements made from passive remote sound-

ing sensors from polar and geostationary orbiting platforms. These potentially provide global information about the atmosphere

having full global coverage every day or better, dependent on the number of platforms flying simultaneously. This information5

can be used to fill the spatial and temporal gaps of the different ground based measurements. A variety of possible methods to

derive the total water vapour amount from space has been developed for various spectral regions.

One of the earliest TCWV data sets provided by satellites was derived from measurements in the microwave region by

Nimbus 5 on NOAA (e. g. Staelin et al., 1976). In the same spectral region the SSM/I instrument and its successor SSMIS on

different platforms provide the longest TCWV times series from 1987 up to now. The measurements of microwave sounders10

yield water vapour under cloud free and cloudy conditions. These data products are usually limited to those measurements

made above water surface. This is a result of the poor understanding of land surface emission in the microwave region. With

microwave sounders it is possible to retrieve water vapour under cloud free and cloudy conditions, but the retrievals are usually

restricted to water surfaces due to not well known contributions of land surface emissions to the received signal (Schlüssel

and Emery, 1990; Wentz, 1997). However, Melsheimer and Heygster (2008) extended the microwave retrieval to polar regions15

where ice and snow is present throughout the year.

TCWV retrievals are also possible in the thermal infrared spectral region, e.g. by the mathematical inversion of measurements

from Infrared Atmospheric Sounding Interferometer (IASI) (Schlüssel and Goldberg, 2002) or Landsat 8 (Ren et al., 2015).

In the near infrared retrievals are performed at wavelengths around 900 nm e.g. by the Medium Resolution Imaging Spec-

trometer (MERIS) (Bennartz and Fischer, 2001; Lindstrot et al., 2012) and its successor, the Ocean Land Color Instrument20

(OLCI) flown on Sentinel-3 (Preusker et al., 2021), or the Moderate Resolution Imaging Spectrometer (MODIS) (Sobrino

et al., 2003; Diedrich et al., 2015). These methods are usually limited to highly reflective surfaces such as land, which excludes

ocean areas with exception of sun glint cases.

Another alternative is to employ measurements made in the visible spectral range to compute TCWV from satellites. Noël

et al. (1999) introduced a modified DOAS (Differential Optical Absorption Spectroscopy) approach applied to GOME measure-25

ments. This approach was also used to retrieve TCWV from the Scanning Imaging Absorption spectroMeter for Atmospheric

CHartographY (SCIAMACHY) (Noël et al., 2005a, b) as well as from GOME-2 (Noël et al., 2008) on the MetOp series.

Wagner et al. (2003) described another approach to retrieve TCWV using the DOAS technique for GOME in the visible red

spectrum. Later, Wagner et al. (2013) described an approach to derive TCWV from GOME-2 and Ozone Monitoring Instrument

(OMI) using the spectra from 430 to 450 nm. Advantageous for this method is a more homogeneous and higher surface albedo30

especially over water. As a consequence, the backscattered signal is stronger but the absorption strength of H2O is generally

weaker. Wang et al. (2014) used a similar approach to determine TCWV from the Ozone Monitoring Instrument (OMI). They

used a wider spectral range from 430 nm to 480 nm to include water vapour absorption at 470 nm.

In autumn 2017 the Sentinel-5 Precursor (S5P) satellite was launched. It contains the Tropospheric Ozone Monitoring

Instrument (TROPOMI), which provides an unprecedented high spatial resolution and temporal sampling.35
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Table 1. Overview of the satellite TCWV data sets used in the study. CF is the cloud fraction, AMF is the air mass factor, AMCF is the air

mass correction factor, SZA is the solar zenith angle.

Dataset GOME-2 on Metop-B S5P SSMIS on DMSP F16

Method AMC-DOAS MPIC SRON Wentz

Reference Noël et al. (2008) Borger et al. (2020) Schneider et al. (2020) Wentz et al. (2012)

Fit window 688–700 nm 430–450 nm 2.354–2.38 µm 3 channels*

Filter criteria AMCF >= 0.8 snow/ice filter aerosol filter rain filter

SZA<=88.0◦ AMF >= 0.1 SZA <= 75◦

CF <= 0.2 CF <= 0.01

Availability Global Global Land Sea

*These channels are 19.35 GHz,22.235 GHz and 37.0 GHz.

Currently, no operational S5P total column water vapour product exists. Schneider et al. (2020) presented a method to derive

water vapour isotopes HDO and H2O from S5P data in the short-wave infrared (SWIR). Most recently, Borger et al. (2020)

retrieved TCWV from Sentinel-5P in the blue spectral range. This is similar to the approach described by Wagner et al. (2013).

Fortunately, the spectral range around 700 nm, which is used in the AMC-DOAS retrieval, is also present in S5P spectra.

Therefore, it is also possible to apply the AMC-DOAS method to TROPOMI data and thus extend the existing time series of5

AMC-DOAS TCWV.

In the current paper we present first results from the adaptation of the AMC-DOAS algorithm to this new instrument. The

paper is structured as follows: Section 2 gives an overview of used instruments and data. Section 3 entirely explains the

adaption of AMC-DOAS to S5P measurements. In particular, its dependence on albedo and cloud properties will be evaluated

and corrected. In section 4 the results of the retrieval and comparisons to other data sets are presented. Section 5 gives the10

summary and the conclusion.

2 Data

This section describes all external data sets used in this study either for generation of the new S5P AMC-DOAS data product

(see section 3) or for the comparisons with other TCWV data (see section 4).

2.1 Sentinel 5P Level 1 data15

Sentinel-5P (S5P) is part of the European Commission’s Copernicus programme and was launched on 13th October 2017. It

is a low polar orbiting satellite observing Earth’s surface and atmosphere at roughly 824 km height. The satellite crosses the

equator at 13:30 local time in an ascending node.
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TROPOMI onboard S5P is a nadir viewing spectrometer, which has a wide spectral range covering the ultraviolet (UV) and

visible spectral range (270 nm to 500 nm), the visible / near infrared (NIR) from 675 nm to 775 nm and the shortwave infrared

(SWIR) region from 2305 nm to 2385 nm (Veefkind et al., 2012). For most of the spectral channels the spectral resolution

is about 0.5 nm with a sampling of around 0.1 nm. The first UV and the SWIR band have spectral resolutions of 1.0 nm and

0.25 nm, respectively.5

The visible / near infrared bands are suitable for the retrieval of TCWV from S5P with the AMC-DOAS algorithm. In

particular, radiances from Band 5 ranging from 661 to 725 nm are used in the present study. They are processed with the L0-1b

data processor version 01.00.00. Irradiance data are taken from the corresponding S5P L1B data set closest in time before the

radiance measurement.

S5P’s swath width of 2600 km allows an almost full daily coverage even in tropical regions. Currently, the spatial resolu-10

tion of the sensor is 5.5×3.5 km2 except for SWIR bands (5.5×7.0 km2) such that in contrast to other satellite instruments

mentioned in section 2.4 below finer features in TCWV are resolved.

After the launch of S5P on the 13 October 2017 up to the end of April 2018 all its sensors were tested and calibrated. During

this commission phase data sets are not provided regularly. However, after switching to operational mode the delivery of the

radiances is almost continuous.15

For the comparison studies more than two years of daily data is used. The time span of these data is from May 2018 to

December 2020.

2.2 GMTED2010

The U.S. Geological Survey provides the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) (Danielson and

Gesch, 2011) which is used to get information on surface height and its type on very fine resolution up to 7.5 arc-seconds.20

The data set used in this study is provided on a 0.025◦ times 0.025◦ spatial resolution and comprises surface type, surface

elevation and surface roughness. For the AMC-DOAS product the closest match between the location of S5P measurement

and the GMTED2010 data product is chosen. Surface type is used to distinguish between land and sea. The surface height is

needed to derive the surface height dependent TCWV product.

2.3 The S5P FRESCO product25

The Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO, Koelemeijer et al., 2001; Wang et al., 2008) is

a method to derive cloud pressure or cloud height and cloud fraction. The method uses three different 1 nm wide spectral

windows close to the oxygen A band near 760 nm with various absorption strength.

In the 758-759 nm window no oxygen absorption occurs. The measured signal thus depends mainly on the cloud albedo,

surface albedo and the cloud fraction. Within the O2A band at 760-761 nm with very strong oxygen absorption and at 765-30

766 nm with weaker oxygen absorption the reflected sunlight additionally depends on cloud top pressure. The depth of the O2

A band gives an information of the height of the clouds. All three wavelength windows provide all necessary information to

retrieve cloud height and cloud fraction.
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In this study we use the cloud information from the operational FRESCO product for S5P (Apituley et al., 2017) for filtering

and post-processing (see section 3). It is provided on version 1.002 to 1.04.

2.4 Water vapour data sets

The independent TCWV products used for comparison are briefly described in this section. An overview of the different

correlative satellite TCWV data sets used in this study is shown in Tab. 1.5

2.4.1 GOME-2 AMC-DOAS TCWV

The first GOME-2 instrument on the MetOp series was launched on MetOp-A in October 2006 (Munro et al., 2016). It is an

improved version of GOME on the second European Remote Sensing Satellite (ERS-2) (Burrows et al., 1999; Munro et al.,

2006). GOME-2 observes the atmosphere in a spectral range from 240 nm to 790 nm with a spectral resolution of 0.26 nm to

0.51 nm. By default its spatial resolution is 80 km across track times 40 km along track with a swath width of 1920 km. Since10

the launch of MetOp-B in September 2012 both satellites fly in a tandem operation mode. The swath of GOME-2 on MetOp-A

was then reduced to 960 km resulting in an increase of spatial resolution by a factor of two across track on the cost of spatial

coverage. Metop-B has a sun-synchronous descending orbit at 9:30am local time of equator crossing. Since November 2018

MetOp-C completes the MetOp series.

AMC-DOAS water vapour products are available for all three MetOp sensors (see e.g. Noël et al., 2008), but for the com-15

parisons with S5P data described in the current study the GOME-2 instrument on MetOp-B (version 0.5.5a) has been selected

because it provides the best spatial and temporal coverage. The estimated accuracy of the GOME-2 TCWV depends on cloudi-

ness and TCWV amount and is typically better than 5 kg m−2.

2.4.2 SSMIS TCWV

From 1987 the Special Sensor Microwave Imager/Sounder (SSM/I) flew on satellites of the Defence Meteorological Satellite20

Program (DMSP). It measures radiances in discrete spectral bands at wavelengths near 1 cm. From 2003 onwards this series

was succeeded by the Special Sensor Microwave Imager and Sounder (SSMIS) on various platforms up to F18 (Kunkee et al.,

2008). For comparison studies with S5P presented in the current paper the dayside data from the SSMIS instrument on the

DMSP F16 satellite are chosen. This is because it has a ascending orbit with an equator crossing time of 15:54 which fits best

to the S5P observation time.25

Its swath width is around 1700 km. SSMIS total water vapour data used here are provided as daily gridded data (0.25◦

resolution) by Remote Sensing System (Wentz et al., 2012). SSMIS data are only available over water surface for rain free

situations. The total water vapour product is processed with the algorithm of Wentz (1997) with version v7. The accuracy of

the SSMIS TCWV is around 1 kg m−2.
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2.4.3 MPIC S5P TCWV

The Satellite Remote Sensing Group at the Max Planck Institute for Chemistry (MPIC) also provides a TCWV product from

TROPOMI measurements making use of the water vapour absorption in the blue spectral range (Borger et al., 2020). The

retrieval consists of the common two-step DOAS approach: in the first step the spectral analysis is performed for a fit window

from 430-450 nm within a linearised scheme. Then, the retrieved slant column densities are converted to vertical columns using5

an iterative scheme for the water vapour a priori profile shape, which is based on an empirical parameterisation of the water

vapour scale height. During an extensive theoretical error estimation, the retrieval’s TCWV uncertainty has been approximated

to about 10-20 % for favourable and 20-50 % for unfavourable observation conditions. Furthermore, in the framework of a

validation study based on daily and hourly measurements it was demonstrated that the MPIC S5P TCWV product is in very

good agreement to reference data sets (e.g. SSMIS) for clear sky scenarios over ocean as well as over land surface. For this study10

only measurements have been included for which the effective cloud fraction is between 0 and 0.2, the airmass factor > 0.1,

and the snow-ice flag indicates snow- and ice-free conditions. The accuracy of the TCWV product is up to 25 % (2.8 kg m−2)

for TCWV smaller than 20 kg m−2 and up to 15 % for TCWV larger than 20 kg m−2.

2.4.4 SRON S5P TCWV

The Netherlands Institude for Space Research (SRON) provides a TCWV product that is restricted to clear sky scenes over15

land and separates water vapour isotops (H2O/HDO) and is retrieved from the SWIR infrared measurements of TROPOMI

from 2354 to 2380.5 nm (Schneider et al., 2020). More details about the retrieval approach and settings can be found in (e.g.

Scheepmaker et al., 2016). The forward model used here ignores scattering which makes strict filtering of clouds necessary. As

cloud filter data from the Visible Infrared Imaging Radiometer onboard Suomi National Polar-orbiting Partnership (Siddans,

2016) are used. The upper threshold for cloud cover is a cloud fraction of 1 %. An additional filter for aerosols is also applied.20

Values at solar zenith angles larger than 75◦ are discarded. The albedo of water surfaces is too low to retrieve TCWV over

oceans such that TCWV only is used over land surfaces. In this study we use version 9_1 of this data set which shows a bias to

TCCON stations of (0.06±0.9 kg m−2 ((1.1±7.2) %).

2.4.5 ECMWF ERA5 TCWV

The ERA5 reanalysis data set (Hersbach et al., 2020) from the European Centre for Medium Range Forecast Reanalysis25

provides atmospheric parameters such as temperature and humidity computed on 137 levels from surface height to 80 km. It is

a model data set in which a large variety of observational data including satellite measurements (e.g. SSMIS), radiosondes and

ground stations are assimilated.

This product is available every hour; data used here are on a 0.25◦ spatial grid. TCVW is derived by vertical integration of

the profile data.30
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3 Methods

3.1 AMC-DOAS Approach

The approach known as Differential Optical Absorption Spectroscopy was first used to describe active remote sensing mea-

surements having long tropospheric optical paths. (Perner and Platt, 1979). Variants of DOAS techniques were proposed and

have been successfully applied from space (see e.g. Burrows et al., 1999, and references therein) to derive the amount of trace5

gases in the atmosphere. The method uses the Lambert Beer’s law, which describes the attenuation of light due to gas absorp-

tion along a light path. The amount of a trace gas along this light path is the slant column density. The slant column density

is converted into a total vertical column via a so-called air mass factor. This air mass factor is usually derived from radiative

transfer calculations taking the solar geometry and scattering processes in the atmosphere into account.

The standard DOAS approach is in principle only valid for weak absorbers. Water vapour is usually a strong absorber and has10

a highly structured absorption spectrum, which typically is not resolved by the measuring spectrometer. This causes saturation

effects that have to be considered in the retrieval.

To account for this, Noël et al. (1999) developed a modified version of the standard DOAS method named Air Mass Corrected

Differential Optical Absorption Spectroscopy (AMC-DOAS). This method uses the equation

ln(
Iλ
I0,λ

) = P − a · (τO2,λ + cλ ·Cvbλ) (1)15

where I0,λ and Iλ are the solar irradiance and Earth’s backscattered radiance, respectively. The index λ denotes quantities with

dependence on the wavelength. τO2,λ is the optical depth of oxygen. The quantity cλ contains the absorption cross section

and air mass factor. The exponent bλ describes saturation effects in the spectra. As in standard DOAS, P is an low order

polynomial accounting for broadband features like scattering. τO2,λ, bλ and cλ are spectral quantities which are pre-calculated

using a radiative transfer model.20

a is the so-called air-mass correction factor, which accounts for differences between the real atmospheric conditions / light

path compared to those assumed in the radiative transfer calculations. Cv is the total vertical column of water vapour, which is

derived together with a and P by a nonlinear fit.

This method is applied to the measured Iλ and I0,λ at a spectral range of 688–700 nm, which has been selected, because in

this spectral region absorption lines of oxygen and water vapour are both present and of similar strength. This is important,25

because the underlying assumption of AMC-DOAS is that the same correction factor a can be applied to both oxygen and

water vapour. This will be explained in more details in the following.

In the case of perfect match of model conditions to the true atmospheric conditions no correction needs to be made. In this

case the measured optical depth of oxygen equals the modelled τO2 thus a= 1.0. If there is a deviation (e. g. introduced by

different meteorological conditions) the light path and thus the oxygen absorption depth differs to the modelled one. Hence30

the correction factor a differs from one. In this case it scales the spectra such that the modelled oxygen absorption and the

measured one match. Because it is assumed that the effect of differences in light path is the same for water vapour and oxygen

the same scaling factor can be applied to water vapour.
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In currently existing applications of the AMC-DOAS method for the GOME-like instruments (Noël et al., 1999; Noël et al.,

2005a; Noël et al., 2008) a surface elevation of 0 km and a constant surface albedo of 0.05 are assumed for the determination

of the spectral parameters τO2,λ, bλ and cλ via radiative transfer calculations. The parameters are calculated for various solar

zenith angles ranging from 0◦ to 88◦. During the retrieval, the quantities are then interpolated to the actual solar zenith angle

of the measurement. A fixed reference H2O profile for a tropical atmosphere with a TCWV of 41.8 kg m−2 from LOWTRAN5

(Anderson, 1995) is used. No clouds are included in the radiative transfer calculations, thus the retrieval is in general only valid

for cloudfree scenes; however small amounts of clouds can in principle be handled via the air mass correction factor a.

The currently existing AMC-DOAS data sets for GOME, SCIAMACHY and GOME-2 use radiative transfer data bases

derived from SCIATRAN version 2 (Rozanov et al., 2005) in combination with HITRAN 2004 spectral line data (Rothman

et al., 2005) are used. Modelled spectra are convoluted with a Gaussian slit function having an optimised full width at half10

maximum (FWHM) for each instrument (between 0.35 nm for GOME and 0.59 nm for GOME-2C) to account for the different

spectral resolutions.

3.2 Adaption and optimization of AMC-DOAS to Sentinel-5p observations

For the application to S5P the AMC-DOAS method was adapted in the following way. The radiative transfer model SCIATRAN

v3.8 (Rozanov et al., 2014) in combination with the HITRAN 2012 (Rothman et al., 2013) spectral absorption database is used15

to compute the quantities c,b and τO2 . As the reference H2O vertical profile a tropical atmosphere with a TCWV of 41.8 kg m−2

is used (from LOWTRAN data base). The spectra are then convoluted with the ground pixel dependent instrument spectral

response functions (ISRFs) (van Hees et al., 2018) of S5P. Their full width half maximum varies around and in the range given

by 0.34 nm ± 0.002 nm. The spectral quantities are calculated for a reference surface albedo of 0.02 for an albedo of a water

surface. The surface height is also considered. As surface height reference the Global multi-resolution terrain elevation data20

2010 (GMTED2010; Danielson and Gesch, 2011) is used. The radiative transfer database is then calculated for every ground

pixel and various surface heights from 0 to 9 km. Note that this added dependence on the surface height also changes the

definition of the AMC-DOAS water vapour product: The S5P TCWV is defined as the total column above the surface, whereas

in previous AMC-DOAS products it was defined as the total column above sea level. This has the advantage that TCWV over

mountain ranges are valid data points.25

In previous applications for the GOME-like instruments the scaling factor a was also used as an inherent quality check (Noël

et al., 1999). If the correction is too large (which is mainly due to clouds) the retrieval results are discarded. The corresponding

minimum air mass correction factor of 0.8 is also used as filter criterium for the S5P data. However, it turns out that for

S5P this filter is not effective enough; too many (especially cloudy) data remain. In general, we derive typically higher air

mass correction factors for S5P than for the other instruments. We attribute this mainly to the different equator crossing times30

(morning vs. noon) in combination with the higher spatial resolution and wider swath width of S5P. Thus additional filtering is

needed.

The largest source of error in the AMC-DOAS TCWV product are associated with partially cloud filled ground scenes.

The larger the fraction of cloud within a ground scene and the higher the cloud, then the lower the effective sampling of the
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Figure 1. a) Example measurement (black) from S5P and fit (red). b) Relative fit residual (relative difference between measurement and fit)

in percent.

troposphere. We therefore apply an additional cloud filter, which is based on cloud fraction and cloud height provided by the

operational S5P FRESCO cloud product. A pixel is considered as cloudy if the cloud fraction is larger than 0.2. In addition,

measurements with cloud heights above surface of more than 2.0 km are also discarded.

An example for a S5P measured spectrum and the corresponding fitted spectrum from the retrieval can be seen in Fig. 1a

for a scene over the pacific with very little cloud fraction. In this example the retrieved TCWV is 16.0 kg m−2 with an retrieval5

error of 0.39 kg m−2. The residual, which is given in relative amount (measurement minus fit divided by measurement, see Fig.

1b), is not larger than roughly 0.3 % in this example. The root mean square of the absolute residual (measurement-fit) is with

0.07 very low. This shows that the measurement and the fit match very well.

3.3 Postprocessing

With the AMC-DOAS method one day of S5P measurements (23 February 2020) has been processed and filtered according10

to the procedure described above. The resulting S5P TCWV product shown in Fig. 2a represents all expected spatial features.

Within the Intertropical Convergence Zone (ITCZ) the values are largest. Towards polar regions the TCWV decreases.

Details on the quality of the AMC-DOAS S5P TCWV are revealed by the deviation to the collocated ERA5 TCWV (Fig. 2b)

which shows several issues. On global average, there is only very little difference of 0.05 kg m−2 between both data sets. Over
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Figure 2. Visualisation of the effects of the correction on the absolute AMC-DOAS S5P TCWV in the left column and its deviation to TCWV

from ERA5 in the right column for the 23 February 2020. Grey areas are data gaps mainly due to the filtering.

ocean repeating patterns are visible. These patterns are more pronounced over regions with higher TCWV. Over land systematic

positive deviations over regions with higher surface albedo can be observed, like Sahara and Australia. These regions typically

have a higher surface albedo than the reference used for the AMC-DOAS radiative transfer data base. This implies that surface

albedo influences on the retrieved AMC-DOAS TCWV need to be considered. Also remnant clouds will affect the retrieval.

Thus an additional correction scheme has been introduced to reduce systematic effects due to surface albedo and clouds. This5

is described in the following subsections.

3.3.1 Albedo and cloud effects

Clouds hide parts of the atmospheric profile depending on cloud height and cloud fraction. This is especially critical for water

vapour, which is most abundant close to the surface. This is the reason why we limit from present the scenes being studied to

those having cloud fractions from 0 to 0.2.10

The effects of varying surface albedo on the measured signal and the light path are in principle handled in the AMC-DOAS

method by the fitted polynomial and the air mass correction factor. The remaining influences of albedo on the retrieval results

11
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Figure 3. a) Correction factor as function of surface albedo for various solar zenith angles. b) Correction factor as function of cloud fraction

for various cloud heights.

are due to the inequal (and usually unknown) shapes of the water vapour and oxygen profiles. The cloud effect and the albedo

effect are not completely separable. It is therefore required to derive correction factors for various combinations of cloud

fraction, cloud height, surface albedo, surface height and solar zenith angle.

To investigate the dependence of AMC-DOAS TCWV on surface albedo and cloud properties radiances Iclear and Icloud

are simulated with SCIATRAN for the clear sky case and the fully cloudy case, respectively. In this manuscript the term of5

albedo is used to describe the spectral reflectance from surface and clouds. This assumes a lambertian surface where the total

reflected radiation is homogeneously distributed over a hemisphere, i. e. 2π steradians. For the small spectral window used in

the retrieval, this is considered a reasonable approach and spectral dependence of surface albedo is ignored. For the clear sky

case, surface albedo, surface height and solar zenith angle are varied. For the cloudy case we also consider dependencies on

cloud height and cloud fraction.10

A cloud is considered in the simulations as a reflecting layer with an albedo of 0.8 which is located at a given height. This

follows the definition of the S5P FRESCO product. The simulated cloud-free and cloudy radiances are then mixed by the cloud

fraction CF according to the independent pixel approximation:

Imixed = CF · Icloud + (1−CF ) · Iclear (2)

The spectrum Imixed is then used in the AMC-DOAS retrieval. The ratio of the reference (‘true’) TCWV Cv,ref to the15

retrieved TCWV Cv,retr may then be used as a multiplicative correction factor cac:

cac =
Cv,ref
Cv,retr

(3)

Examples for this correction factor are shown in Fig. 3.
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If no cloud is present, only the variation of the surface albedo plays a significant role in the AMC-DOAS retrieval (Fig.

3a). In the case of smaller surface albedo than the reference of 0.02 the retrieved TCWV is underestimated thus the correction

factor is larger than 1. Larger surface albedo is associated with an overestimation of the reference TCWV and a correction

factor smaller than one.

An example for the correction factor for cloudy scenes is shown in Fig. 3b. For low level clouds located at around 500 m5

above surface or less there is an increase of the retrieved TCWV resulting in correction factors smaller than 1. Low level clouds

only hide a relative small part of the water vapour profile. As discussed before albedo leads to an overestimation of total water

vapour. Since the albedo of clouds is large the albedo effect overcompensates the shielding effect. This effect increases for

larger cloud fractions. For clouds higher than 500 m the shielding effect dominates resulting in a reduction of the retrieved

TCWV and a correction factor larger than 1. It can also be seen that the correction increases for higher clouds and larger cloud10

fractions.

To avoid that the correction factor dominates the retrieval results an additional filter is applied to exclude situations where

the correction is too large. Thus the overall correction factor is restricted to values between 0.6 and 1.2.

The final albedo and cloud correction factor depends on geometrical information (solar zenith angle, ground pixel; taken

from the S5P measurements), surface elevation (from GMTED2010), cloud fraction and cloud height (from the S5P FRESCO15

product) and surface albedo.

As the surface albedo is highly variable, we do not use a climatology but determine it directly from the S5P reflectance

measurements from 684 nm to 686 nm. This spectral region is close to the retrieval window of 688-700 nm, but contains no

major atmospheric trace gas absorption. To relate the reflectance to the surface albedo radiances and irradiances are simulated

from 684 nm to 686 nm with varying surface albedo, solar zenith angle,surface height, cloud fraction and cloud height. To20

smooth out fluctuations the average reflectance over this 2 nm window is calculated. This results in a database from which for

each (measured) average reflectance, geometry and cloud properties a surface albedo can be derived via interpolation.

The resulting clear sky albedo and cloud correction is then applied as multiplicative factor (Cv,ac) to get the corrected

TCWV:

Cv,ac = Cv,uc cac (4)25

where Cv,uc is the uncorrected TCWV. Note that due to this correction the TCWV product is independent of the surface

albedo chosen as reference for the basic AMC-DOAS retrieval.

The results of this correction when applied to the uncorrected data from 23 February 2020 is shown in Fig. 2c and its

deviation to ERA5 in Fig. 2d. The global mean deviation is slightly increasing but the variability denoted by the standard

deviation SD is lower compared to the uncorrected product. Over land the application of the correction factors reduces the30

deviations over the deserts. However, over ocean there are still some patterns visible. These stripe-like deviations resemble

orbital features; in the eastern part of the S5P swath the TCWV is generally lower than ERA5.
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Figure 4. Counts of the relative deviation of the albedo and cloud corrected TCWV to the nadir value for every ground pixel for February

2020. The orange line is a fitted polynomial of 3rd degree

3.4 Empirical correction for S5P instrumental striping

The stripe-like deviations over ocean shown in Fig. 2d cannot be reproduced by our simulation. Consequently, we assume

that they are related to instrumental features. To eliminate this repeating pattern an empirical correction is performed. This

correction only depends on the relative location of the ground pixel. There is no dependence on season or position of the

instrument. Since these features are only visible over ocean and not over land the correction will only be applied to ground5

pixels located over water surfaces.

For this purpose for each swath over water surface the relative difference ∆Cv,ac of the retrieved TCWV at each ground

pixel i to the nadir value (ground pixel inadir=223) is computed:

∆Cv,ac(i) =
Cv,ac(i)−Cv,ac(inadir)

Cv,ac(i)
(5)

All S5P orbits in February 2020 are used for this to have good statistics. For every ground pixel with valid TCWV measure-10

ment ∆Cv,ac(i) is calculated and counted with bins of 0.05. This results in a histogram of ∆Cv,ac as function of ground pixel
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https://doi.org/10.5194/amt-2021-144
Preprint. Discussion started: 2 June 2021
c© Author(s) 2021. CC BY 4.0 License.



number which is shown in Fig. 4. As can be seen there is a systematic ground pixel dependence of ∆Cv,ac. In the western part

of the swath (ground pixel numbers smaller than inadir) the relative deviation is positive whereas the eastern part (ground pixel

numbers larger than inadir) shows more pronounced negative deviations.

For the correction the maximum amount of ∆Cv,ac at each ground pixel is then used to fit a polynomial Pemp of third degree

(orange line in Fig. 4):5

Pemp(k) = a0 + a1 k+ a2 k
2 + a3 k

3 (6)

where k = i− inadir is the shifted ground pixel number and aj are the derived polynomial coefficients, namely: a0 = 0.0,

a1 =−1.099 · 10−3, a2 =−1.13 · 10−6 and a3 = 1.075 · 10−8 .

The multiplicative correction factor cemp for every ground pixel is then defined as:

cemp(i) = 1−P (i− inadir) (7)10

This correction is then applied in addition to the cloud and albedo correction, leading to:

Cv,emp = Cv,ac cemp (8)

The results are shown in Fig. 2e and f. The spatial patterns over ocean are corrected out and also the mean deviation to ERA5

and the scatter of the data is reduced.

Note that all applied corrections do not significantly change the main vapour patterns (Fig. 2a,c,e), but generally result in a15

smoother spatial distribution.

4 Results and Discussion

All S5P radiances from May 2018 to December 2020 have processed by the AMC-DOAS method and corrected as de-

scribed above. The typical precision of the AMC-DOAS S5P TCWV for a single measurements (derived from the fit) is

about 0.5 kg m−2.20

From these, a daily gridded data product with a spatial resolution of 0.25◦ degree× 0.25◦ is produced, resulting a data

set called TCWVAMC,S5P in the following. An overview of this TCWV product is given in Fig. 5 which shows the spatial

distribution of TCWVAMC,S5P for four months.

The general features shown in the maps meets the expectations from climatology. In the tropics there is higher TCWV due

to high temperature. Within the ITCZ the values are highest. Towards the polar regions the air gets colder thus the TCWV25

decreases. The propagation of the main features during the course of the time is also visible. The global average of TCWV is

around 18.5 kg m−2.

In January, the ITCZ is located close to the equator. During the course of time it shifts northwards until July. Large changes

are observed comparing January and July over southeast Asia (e.g. India, China) and nearby water surfaces. Here the ITCZ

reaches its northernmost position causing an increase of TCWVAMC.S5P of around 30 kg m−2 from January to July.30
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Figure 5. Global maps of mean TCWVAMC,S5P for four months in 2019.

During northern summer as the entire northern hemisphere warms the global average TCWV is largest (23.1 kg m−2). This

is in large part due to larger land masses in the northern hemisphere. They are significantly warmer during July than the large

oceans in the southern hemisphere in January. Smaller contributions come from Arctic regions which also show enhanced

TCWV. Such large TCWV increase cannot be observed from July to January over the southern hemisphere due to the lack of

landmasses.5

TCWVAMC,S5P also shows some differences between April and October. In general, all features follow the position of the

sun but with a time lag of several weeks. That means in April the northern hemisphere is colder which results in higher TCWV

in October.

Over sea the averaged TCWVAMC,S5P is higher than over land due to different surface elevation, larger temperature variability

and also large evaporation over water surfaces. No data are available in winter hemisphere’s polar night region due to lack of10

solar insulation.

To assess the quality of this new data set it is compared to various other other data sets (see section 2.4 for more information),

which are either also provided on a daily 0.25◦ × 0.25◦ grid or have been gridded accordingly. We use the following notation

for these correlative data sets:

– TCWVAMC,GOME-2B:15

GOME-2B data product, which is based on the original AMC-DOAS approach; daily gridded to 0.25◦ degree× 0.25◦.

– TCWVWENTZ,SSMIS:

SSMIS data product using microwave emissions as input; provided on a daily 0.25◦ grid.
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Table 2. Correlation coefficient R, slope m, intercept n, average difference ∆TCWV (in kg m2) to the AMC-DOAS S5P product and

collocation counts for the scatter plots in Fig. 6. The errors represent one standard deviation.

Data set Surface R m n ∆TCWV Counts

ERA5
Land 0.98 1.05±3.75·10−4 0.00±5.76·10−3 -0.7±3.2 251160

Water 0.98 0.96±3.16·10−4 2.97±9.10·10−3 -2.0±3.5 354614

AMC-DOAS GOME-2B
Land 0.97 1.05±6.18·10−4 0.46±7.91·10−3 -1.3±4.2 207626

Water 0.92 0.93±7.99·10−4 -0.26±2.00·10−2 1.7±6.7 237105

MPIC S5P
Land 0.95 0.92±9.82·10−4 0.75±2.27·10−2 0.8±4.7 103960

Water 0.97 0.93±3.77·10−4 2.19±1.11·10−2 -0.3±4.1 329936

SRON Land 0.99 0.89±4.02·10−4 0.51±5.26·10−3 0.8±1.4 52070

SSMIS Water 0.96 0.99±5.43·10−4 3.76±1.48·10−2 -3.7±4.6 256188

– TCWVMOD,ERA5:

ECMWF ERA5 model data, provided every hour on a 0.25◦ grid. Based on the position of every S5P pixel the spatial

and temporal nearest ERA5 TCWV is chosen. This results in a pseudo swath data set consisting of ECMWF data at

geolocations of S5P which is filtered according to the AMC-DOAS filter criteria. These pseudo swaths are then daily

gridded to 0.25◦ × 0.25◦ resolution.5

– TCWVMPIC,S5P:

S5P TCWV product data from MPIC in Mainz using the ‘blue’ spectral range; provided on a daily 0.25◦ grid.

– TCWVSRON,S5P:

S5P TCWV product data from SRON using the SWIR spectral range; daily gridded to 0.25◦ degree× 0.25◦.

In the first step, daily TCWVAMC,S5P data are compared to other daily TCWV products. Global deviation maps are then10

presented and discussed. The comparisons are done over land and ocean separately to detect possible systematic features

arising from surface type and/or elevation. It has to be noted that all satellites have different time of overpass thus diurnal

changes in TCWV may affect the comparison results.

4.1 Daily comparisons

The comparison procedure for the daily data is as follows. For every day TCWVAMC,S5P and the other TCWV products are15

collocated. From the collocated data sets pairwise differences ∆TCWVAMC,S5P−Z are calculated:

∆TCWVAMC,S5P−Z = TCWVAMC,S5P −TCWVZ (9)

Here, the index Z denotes the specific data set to compare with. Additionally, the difference is averaged and its variability is

given by standard deviation SD. The averages are calculated with weighting according to the latitude.
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A linear regression model using least square technique is applied to TCWVAMC,S5P and TCWVZ. This gives the correlation

coefficient R and the regression parameters n and m denoting the intercept and the slope, respectively.

A scatter plot for 23 February 2020 is shown in Fig. 6 for the various TCWV products. All statistical parameters are given

in Tab. 2.

4.1.1 ERA55

ERA5 is a model comprimising satellite data (e.g. SSMIS), radiosondes and weather observations for reanalysis. That makes

TCWVMOD,ERA5 a very robust TCWV product. Due to the fact that ERA5 is an hourly data set temporal mismatch is restricted

to less than half an hour.

The comparison between TCWVAMC,S5P and TCWVMOD,ERA5 (Fig. 6a,b) shows a very small difference of -0.7 kg m−2 (Fig.

6a) over land. The values are orientated along the 1:1 line which is also denoted the by small standard deviation of 3.2 kg m−2.10

Over sea (Fig. 6b) the difference is larger (-2.0 kg m−2) than over land but the standard deviation (3.5 kg m−2) and also the

correlation coefficient is very similar. The correlation coefficients are above 0.98 indicating a very good agreement between

both data sets.

4.1.2 GOME-2B

The comparison between TCWVAMC,S5P and TCWVAMC,GOME-2B (Fig. 6c,d) shows very good agreement between both data15

sets irrespective of whether the retrieved TCWV is over land or water surfaces. This is demonstrated by the regression line

(solid line in Fig. 6c,d) being very close to the 1:1 line (dotted) and a correlation coefficent above 0.9.

The average TCWV difference ∆TCWVAMC,S5P−AMC,GOME−2B is -1.3±4.2 kg m−2 over land (Fig. 6c), i. e. close to

zero (see Tab. 2 for further details). Because the slope of the regression line is nearly one there is only little dependence of the

difference on the magnitude of the TCWV. Due to the large number of lower TCWV around 10 kg m−2 the linear regression20

model is more weighted to these values. Over ocean (Fig. 6d) there is more variability in the difference, which is also indicated

by the standard deviation of 6.7 kg m−2. The average deviation is 1.7 kg m−2. There is a land sea bias of 3 kg m−2 at this day.

Both products are processed with AMC-DOAS. In contrast to TCWVAMC,GOME-2B the surface height is considered during

the retrieval of TCWVAMC,S5P, which explains higher values of TCWVAMC,GOME-2B over land. The additional postprocessing

only done for TCWVAMC,S5P also affects the results.25

Other sources that influences the comparison results are the filters applied to the TCWVAMC,S5P. As mentioned above

TCWVAMC,S5P data are filtered with an additional cloud filter, which is not applied to GOME-2B data. The propagation of

large scale cloud decks like in lows or the well known stratocumulus cloud region is not that fast within the time difference of

MetOp-B and S5P overpasses of four hours (at equator). These cloud decks are therefore located at similar positions for both

overpass times. Thus cloud masking applied to TCWVAMC,S5P will also filter clouds by some degree from TCWVAMC,GOME-2B30

(as we only consider grid points where both instruments have data).
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Figure 6. Density plot of TCWV comparisons with the AMC-DOAS S5P product over land (left column)) and over sea (right column) for

23 February 2020 for a) and b) ERA5 TCWV, c) and d) AMC-DOAS GOME-2B TCWV, e) and f) MPIC S5P TCWV, g) SRON S5P TCWV

and h) SSMIS TCWV. The dotted line represents perfect agreement (1:1), the solid line shows the (fitted) linear relationship between the data

sets. All statistical parameters are given in Tab. 2.
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4.1.3 MPIC S5P

The TCWVAMC,S5P and TCWVMPIC,S5P both use S5P Level 1 measurements but different spectral regions are used in the

retrieval. Over land (Fig. 6e) the mean difference between both data sets is 0.8 kg m−2 with a standard deviation of 4.7 kg m−2.

The TCWVMPIC,S5P data contain a few values up to 90 kg m−2 which are not observed in the TCWVAMC,S5P. Over land there

are less valid data in TCWVMPIC,S5P compared to other data sets, which can be seen from the number of valid counts (Tab. 2)5

after collocation. This is due to the filtering of snow and ice contaminated scenes.

Over sea (Fig. 6f) there is almost no mean deviation (-0.3 kg m−2) and a lower variability (4.1 kg m−2) than over land.

The differences are smallest over both land and sea compared to the other data sets. This meets the expectations because

measurements are performed by the same instrument. Nevertheless, uncertainties may arise from sampling differences.

4.1.4 SRON S5P10

The TCWVAMC,S5P and TCWVSRON,S5P also rely on the same instrument. In contrast to TCWVMPIC,S5P the SRON product has

a poorer spatial coverage due strict cloud filtering and limitation to land. The main aim of the SRON data product is to provide

columns with low error caused by cloud contamination. This results in 50000 collocated grid points over land (see Tab. 2) can

be used for comparison. Fig. 6g also illustrates this. There is far less scatter visible than for the other data sets. Most of the

TCWV pairs are well oriented along the regression line. This is also shown by an almost perfect correlation coefficient of 0.99.15

On average, the deviation between TCWVAMC,S5P and TCWVSRON,S5P is 0.8 kg m−2. The standard deviation is 1.4 kg m−2

which is comparably low with respect to the other TCWV products; the TCWVSRON,S5P rarely exceeds 40 kg m−2. Both low

scatter and low total columns are probably related to the filtering, which removes almost all even partly cloudy scenes, i.e.

especially those scenes which require dedicated corrections in the other S5P TCWV algorithms.

4.1.5 SSMIS20

Microwave instruments are known to provide good information on total water vapour because microwave emission penetrates

through clouds. However, the comparison to TCWVAMC,S5P is limited to ocean areas because SSMIS does not provided data

over land surfaces.

The mean deviation between TCWVAMC,S5P and TCWVWENTZ,SSMIS is the largest compared to other sensors (-3.7 kg m−2).

The regression line in Fig. 6i shows a constant offset between both data sets. There are several possible reasons to explain this25

large offset:

– The DMSP F16 has an orbit later in the afternoon (around 16:00 LT). This can affect the TCWV due to slight warming

of the sea surface and the above air. This causes enhanced evaporation and thus a slightly higher water vapour content.

– In the microwave region the radiation penetrates through the clouds. As consequence SSMIS senses the entire profile

also if clouds are present. The total water vapour usually is higher in cloudy scenes than in clear sky scenes which is also30
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Figure 7. Time series of the daily averaged difference between TCWVAMC,S5P and TCWV from other data sets over water (a) and land (c)

surface from May 2018 to December 2020. The right panel shows the respective standard deviation over land (b) and water (d).

referred to as the clear sky bias (Gaffen and Elliott, 1993; Sohn and Bennartz, 2008). In TCWVAMC,S5P data with cloud

fractions above 0.2 are excluded, which causes a negative offset.

– The AMC-DOAS retrieval and also the cloud and albedo correction for S5P use as reference a tropical profile. Usually

the reference profile shape and the true profile shape differ. That also can cause systematic deviations especially in the

presence of remnant clouds.5

– The cloud and albedo treatment is dependent on the quality of the used cloud products. Uncertainties in the cloud product

will have an impact on the surface albedo estimation and also on the calculation of the correction factors.

There also are some values where TCWVWENTZ,SSMIS exceeds TCWVAMC,S5P by more than 20 kg m−2. These arise from

two DSMP F16 orbits located between the International Date Line and North and South America. Those orbits belong to the

very first orbits of the daily SSMIS TCWV product. For the TCWVAMC,S5P the transition between the first and last orbit of the10

specific day is located much closer to the International Date Line. This results in a time mismatch of roughly 24 h between S5P

data and SSMIS data in these areas causing these observed TCWV differences.

4.2 Time series of TCWV differences

Since TCWVAMC,S5P is available for more than two years it is worthwhile to investigate the behaviour of differences of TCWV

throughout the time. Fig. 7 shows the daily averaged TCWV differences between the TCWVAMC,S5P product and the different15
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correlative data sets from May 2018 to December 2020. Again this is done for land surface (Fig. 7a) and water surface (Fig.

7c) separately. The respective standard deviations are also shown (Fig. 7b,d)

The temporal behaviour of the TCWV difference between the AMC-DOAS products for S5P and GOME-2B over land

shows a systematic deviation between -1 kg m−2 -2.5 kg m−2; also, a seasonal cycle is visible. The largest deviations can be

seen during the northern summer months whereas in northern winter the deviation is least. The standard deviation also shows5

a seasonal cycle with largest variability also during northern summer. Compared to the other data sets the average difference is

largest.

The behaviour of the difference to the S5P AMC-DOAS product is quite different for S5P data set from MPIC. There is

a clear jump of around 1.8 kg m−2 located at 20 March 2019. This is due to an update of the TROPOMI FRESCO-S cloud

product used in the generation of TCWVMPIC,S5P, which affects the retrieved TCWV. Before the jump the deviation is between10

0.5 kg m−2 and -1 kg m−2, hereafter the deviation is slightly positive. This jump mainly originates from the tropical regions

where evergreen rainforests are common, e.g. Amazon rainforest.

The difference also shows a seasonal cycle which is of opposite sign compared to the difference between the two AMC-

DOAS data sets. The seasonal cycle cannot be observed in the standard deviation. The standard deviation of ∆TCWVAMC,S5P-MPIC,S5P

reveals a reduction of about 1 kg m−2 caused by the effects of the change in the FRESCO-S cloud product.15

The difference between TCWVAMC,S5P and TCWVSRON,S5P shows a deviation of around 1.2 kg m−2 and also a seasonal cycle

with least differences in northern winter and largest differences during northern summer. This is similar to the seasonality of

∆TCWVAMC,S5P-MPIC,S5P. After March 2019 the deviation to both S5P TCWV products are also very similar. At 7 March

2020 there was a change in the cloud product used by SRON. As for ∆TCWVAMC,S5P-MPIC,S5P this causes a small jump in

∆TCWVAMC,S5P-SRON,S5P of around 0.5 kg m−2. The standard deviation varies around 1.5 kg m−2, which is lower compared20

to other TCWV products. The TCWVSRON,S5P are filtered with a very strict cloud filter that only left small TCWV values.

Therefore TCWV values from tropical regions where TCWV is high are discarded.

Between TCWVAMC,S5P and TCWVMOD,ERA5 there is a general negative deviation around 1.6 kg m−2. In contrast to the other

data sets only very small seasonal variability can be seen.

In summary, the mean deviation between TCWVAMC,S5P and other TCWV data ranges from -1 to -4 kg m−2. The smallest25

difference can be observed between TCWVAMC,S5P and TCWVMPIC,S5P. The deviation TCWVWENTZ,SSMIS to TCWVAMC,S5P

ranging from -3 to -4 kg m−2 is largest also throughout the time. With except of the difference between the two AMC-DOAS

products there is also a small seasonal feature in ∆TCWV with largest deviations between TCWVAMC,S5P and other data

products in January and smallest deviation in July. These deviations for different seasons are also of similar magnitude. In

contrast to land and also to other data sets over ocean the mean deviation between TCWVAMC,S5P and TCWVAMC,GOME-2B is30

positive without seasonal features. The standard deviation of the TCWV differences ranges between 3 to 5 kg m−2 with except

for ∆TCWVAMC,S5P-AMC,GOME-2B which is around 6 to 7 kg m−2.

At the end of November 2020 there was a version change in the FRESCO product which is used to correct for cloud effects

and is also used to calculate surface albedo to derive the AMC-DOAS S5P TCWV product. This caused a general increase
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Table 3. Global average (± standard deviation) of the TCWV products and average difference to the AMC-DOAS S5P TCWV product

(∆TCWV) for January 2019 in kg m−2.

Land Sea Global

Dataset Mean ∆TCWV Mean ∆TCWV Mean ∆TCWV

AMC-DOAS S5P 11.6±13.8 – 22.5±15.3 – 18.7±15.7 –

ERA5 12.1±15.3 -1.0±2.5 24.3±15.2 -1.8±1.5 20.0±16.3 -1.5±2.0

AMC-DOAS GOME-2 12.0±14.3 -1.1±2.8 20.7±13.9 1.7±2.8 17.5±14.6 0.7±3.1

MPIC S5P 19.8±16.6 -1.7±4.3 24.5±15.7 -1.8±2.2 23.3±16.0 -1.8±2.8

SRON S5P 8.2±9.3 1.4±2.5 – – 8.2±9.3 1.4±2.5

SSMIS – – 27.2±15.4 -4.8±2.3 27.2±15.4 -4.8±2.3

Table 4. Same as Tab. 3, but for July 2019.

Land Sea Global

Dataset Mean ∆TCWV Mean ∆TCWV Mean ∆TCWV

AMC-DOAS S5P 22.7±11.7 – 23.3±15.5 – 23.1±14.5 –

ERA5 24.5±13.2 -1.9±2.9 24.9±15.6 -2.2±1.8 24.8±14.9 -2.1±2.2

AMC-DOAS GOME-2 24.9±12.6 -2.0±3.7 21.5±14.3 1.7±2.8 22.5±13.9 0.6±3.5

MPIC S5P 21.2±11.8 1.7±3.3 26.0±16.0 -2.2±2.5 24.5±15.0 -1.0±3.3

SRON S5P 18.5±8.6 2.0±3.3 – – 18.5±8.6 2.0±3.3

SSMIS – – 28.8±16.4 -5.3±2.3 28.8±16.4 -5.3±2.3

of 2.3 kg m−2 in TCWVAMC,S5P over both land and water surfaces. Due to this increase the deviations also show this jump of

around 2 kg m−2 except for ∆TCWVAMC,S5P-MPIC,S5P.

4.3 Assessment of the spatial dependence of the difference

To investigate possible reasons for e.g. the seasonal cycle or the different temporal behaviour among the data sets we present

monthly mean global maps of all data and their difference to our new product. The monthly comparison is restricted to January5

and July 2019 because all typical spatial and temporal features can already be seen from these months. Values for the global

average of the TCWV products and its standard deviation and also their difference to TCWVAMC,S5P can be found in Tab. 3.

for January and Tab. 4 for July.
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Figure 8. Global map of monthly averaged ERA5 TCWV (left) and the difference AMC-DOAS S5P TCWV – ERA5 TCWV (right) for

January and July 2019 (top, bottom).

4.3.1 ERA5

Fig. 8 shows a comparison of the AMC-DOAS S5P TCWV products with ERA5 model data. The temporal and spatial sampling

of the ERA5 data is the same as for TCWVAMC,S5P, because we selected the closest model data point for each S5P measurement.

All spatial features of the differences can be seen in Fig. 8b,d.

Overall, the ERA5 TCWV is slightly larger. On global average the deviation varies around -1.5 kg m−2 with a standard5

deviation of 2.0 kg m−2 for January. In July there is a larger deviation of -2.1 kg m−2 and also a larger standard deviation

of 2.2 kg m−2 which originates from features over land. Over land the deviation is around -1.0 kg m−2 with a variability not

larger than 2.5 kg m−2. The tropical region contributes most to the negative deviation in all time periods. In July, the negative

deviation spreads northward. The large tropical deviations are collocated with the evergreen rain forests in the Amazon region,

central Africa and also the tropical islands of Asia. July is vegetation growth season in the northern hemisphere, i.e. the trees10

built up leaves. This pattern reveals potential influences of vegetation either on the TCWVAMC,S5P or on the FRESCO product

which is used as input for the correction. Other features can also be seen in large parts of central Australia in January and

Sahara in July. Both regions are deserts; they show positive deviations up to 5 kg m−2 during local summer months. Despite of

both features the discrepancies between TCWVAMC,S5P and TCWVMOD,ERA5 over land are very close to zero over large regions.

Over sea the deviations ranging from -1.8 kg m−2 to -2.2 kg m−2 are larger than over land by 0.3 kg m−2 in July and around15

0.8 kg m−2 during January. The distribution of the deviation is quite homogeneous denoted by the reduced standard deviation

of around 1.5 kg m−2. Within the 30 ◦S and equator band the deviation is slightly larger than in other regions in July.
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Figure 9. As Fig. 8, but for the AMC-DOAS GOME-2B TCWV product.

4.3.2 GOME-2B

In general, the monthly averaged TCWVAMC,GOME-2B (Fig. 9a,c) shows the same features as TCWVAMC,S5P (Fig. 5). The main

distinctions to TCWVAMC,S5P are evident over the tropics where TCWVAMC,GOME-2B barely exceeds 50 kg m−2. There are no

TCWVAMC,GOME-2B data over Himalayan mountain ranges due to exclusion of GOME-2 values when the air mass correction is

too large.5

More details are revealed by the difference maps (Fig. 9b,d). As can be seen there are systematic spatial structures in the

differences. In general, the highest differences both over land and water occur close to the tropics where absolute TCWV is high.

In the mid-latitudes and polar regions the deviations are close to zero. Over land surface negative deviations are prevailing, e.g.

over entire Africa or India. Especially over Africa several effects can be seen. In the northern part where the surface is bright due

to the deserts the albedo correction reduces the TCWVAMC,S5P resulting in a difference of around -5 kg m−2 especially in July.10

The southeastern part of Africa also shows enhanced differences. This region is typically more elevated than the northeastern

part. This difference in the surface elevation is only considered in the TCWVAMC,S5P product, which results in lower TCWV

over mountain regions and thus explains the larger retrieved TCWVAMC,GOME-2B (which represents the column from sea level)

there. These differences are therefore mainly due to the definition differences between both data sets. In July the deviations

over land are largest and widely spread throughout the northern hemisphere due to overall increase of TCWV.15

Over sea the difference is overall positive. Since over ocean the surface height is zero, the differences between the two

data products cannot be attributed to the different TCWV definitions, they have to be related to the postprocessing, which is
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Figure 10. As Fig. 8, but for the S5P TCWV product from MPIC.

only performed for the S5P product. The mean sea surface albedo does not deviate much from the assumptions made in the

retrievals, therefore differences caused by the post-processing corrections are more likely to be related to clouds.

Most deviations can be seen in the tropical area where the average TCWV is largest. The ITCZ, where highest TCWV

occurs, is also predominated by clouds due to enhanced convection. Here, the correction of cloud effects affects the already

high TCWV in the tropics more than in other regions.5

The difference of the crossing time of GOME-2 on MetOp-B and Sentinel-5p at equator is about four hours. This also can

have an effect due to diurnal cycles in TCWV and in cloud cover. In some areas like the stratocumulus cloud shields over ocean

there is a diurnal cycle with enhanced cloud cover in the morning hours and decreased cloud cover during the afternoon hours

(Noel et al., 2018). This may reduce the retrieved TCWVAMC,GOME-2B due to more cloudiness during the morning overpass of

GOME-2 on MetOp-B. Over land the situation is reversed due to more pronounced convective clouds in the afternoon hours.10

The daily comparison between TCWVAMC,S5P and TCWVAMC,GOME-2B discussed earlier showed a quite large standard devi-

ation of about 6 to 7 kg m−2. This can be related to the spatial structure of the deviation over the sea surface whereby largest

discrepancies are located in the tropics.

4.3.3 MPIC S5P

The S5P TCWV data sets provided by MPIC gives the opportunity to compare different methods applied to the same instru-15

ment. This reduces the effect of possible temporal changes of TCWV as a source of uncertainty in the comparison results. The

averaged TCWVMPIC,S5P (Fig. 10a,c) shows similar structures as TCWVAMC,S5P (see Fig. 5 for comparison). Over the western

Pacific close to Indonesia there are values up to 70 kg m−2 which are not shown in the averaged TCWVAMC,S5P.
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Figure 11. As Fig. 8, but for the S5P TCWV product from SRON.

Main discrepancies between TCWVAMC,S5P and TCWVMPIC,S5P (Fig. 10b,d) occur over land in tropical regions (Amazonas,

Indonesia, central Africa) during January. As mentioned before, there was a jump in the daily averaged difference between both

data sets at 20 March 2019 due to changes in cloud parameters used by MPIC. Before this change ∆TCWVAMC,S5P-MPIC,S5P

is enhanced in these regions (see Fig. 10b). In July (Fig. 10d), ∆TCWVAMC,S5P-MPIC,S5P does not show such large values as in

January anymore.5

In other areas there are far less deviations. Australia shows larger positive deviations during January but also in South Amer-

ica and in southern parts of Africa positive deviations are observed. During July all land masses on the northern hemisphere

show constant positive deviations whereas south of the equator there are negligible differences.

Over sea there is an overall negative difference which is slightly larger in July (-2.2 kg m−2) than in January with -1.8 kg m−2.

Large areas of negative deviations can be observed in the southern hemisphere during July whereas in the northern hemisphere10

deviations are very close to zero. A reversed pattern is slightly visible in January. Largest discrepancies can be seen close

to Indonesia. The ITCZ is also marked by the narrow band of slightly negative deviation. This can be due to different cloud

correction schemes.

4.3.4 SRON S5P

Fig. 11a,c shows the TCWVSRON,S5P. The data gaps within the tropics are clearly visible. Despite monthly averages there are15

no data within one month there. This is related to the strict cloud filter, because especially the tropics are associated with higher

cloud occurrence.
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Figure 12. As Fig. 8, but for the SSMIS TCWV product.

The difference to the monthly averaged AMC-DOAS S5P data (∆TCWVAMC,S5P-SRON,S5P) is mainly positive during January

(Fig. 11b). On average, the deviation is 1.4 kg m−2 for this month. Especially southern hemispheres land masses except for

the Antarctic show quite large positive deviations up to more than 10 kg m−2 during January. The largest differences can

be observed in the northern part of Australia. The northern hemisphere shows only small and spatial homogeneous positive

deviations during January.5

In July the land masses on the southern hemisphere shows positive deviation over South America whereas Australia and

South Africa the difference between both S5P TCWV products is very close to zero. Some spots with large positive deviation

also can be seen in parts of the United States of America, northern India and also parts of China. These areas suffer from poor

data availability of TCWVSRON,S5P such that the average only consists of few days. The averaged difference is slightly larger

in July with 2.0 kg m−2.10

Note that in many cases the TCWVSRON,S5P monthly averages consists of not more than five days or less. Actually, only over

deserts there is more than the half of daily data available within a month. This sampling difference between the products may

explain some of the observed deviations.

4.3.5 SSMIS

The spatial distribution of TCWVWENTZ,SSMIS is shown in Fig. 12a,c. There are no data over land surfaces and also not over15

sea ice. The averages over sea are around 27 kg m−2. The deviation (Fig. 12b,d) to TCWVAMC,S5P show an overall negative

deviation of around -5 kg m−2 which is more than for the other data sets. There are also structures visible, e.g. a tongue of

slightly more enhanced discrepancy located over southern parts of the Pacific.
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This deviation can be due to sampling differences as discussed earlier. The time difference of more than 2h also can have an

effect on the ∆TCWVAMC,S5P-WENTZ,SSMIS.

5 Conclusions

The AMC-DOAS approach was successfully applied to S5P measurements to detect TCWV. For this purpose, several im-

provements of the retrieval method have been developed. This includes an update of the underlying radiative transfer data base5

which now especially also considers variable surface elevation. Due to the latter, the AMC-DOAS product is now defined as

the TCWV relative to the surface whereas it was defined relative to sea surface before. This especially results in on average

lower TCWV values over land.

In addition to the usually applied filtering based on the derived air mass correction factor and solar zenith angle also new

filters are applied. These use the S5P FRESCO cloud fraction and cloud height relative to the surface.10

Additional post-processing procedures have been established to account for variable surface albedo and remnant clouds.

Furthermore, an empirical correction has been developed and applied which reduces systematic striping structures in the

retrieved TCWV over ocean. The origin of these structures is currently unclear. They are assumed to be instrumental features,

but this issue needs further investigations.

Except for the empirical stripes correction, the newly developed algorithm modifications are instrument independent and15

may thus also be applied to GOME, SCIAMACHY and GOME-2 to further improve also these AMC-DOAS TCWV data

products.

The updated AMC-DOAS retrieval has been applied to all S5P measurements from May 2018 to December 2020 which

results in a new global TCVW data set. This product was validated by comparison with various independent data sets, namely

with the GOME-2B AMC-DOAS product, ECMWF ERA5 model data and the MPIC S5P TCWV product over land and ocean20

and with SSMIS data over ocean.

The new S5P AMC-DOAS TCWV data agree reasonably well with these other data sets within about ±2.5 kg m−2 except

for the SSMIS product which shows about two times larger negative deviations. Differences to ERA5 model data and the S5P

TCWV product from MPIC show more negative values over sea than land. That indicates a small land sea bias of typically

not more than 1 kg m−2 of the AMC-DOAS S5P TCWV. Best agreement was achieved by comparing S5P TCWV from MPIC25

and AMC-DOAS S5P TCWV. Largest discrepancies between the AMC-DOAS products and the product from ERA5 are found

over regions with large vegetation within the growth season. Between the two AMC-DOAS data sets for S5P and GOME-2B

small offsets were visible with positive deviation over sea and negative deviation over land which are mainly caused by the

changes in the AMC-DOAS retrieval applied to S5P. Small seasonal cycles can be found over land and sea.

The standard deviation of the differences is similar for all data sets and lies in the range 3-5 kg m−2 except for the GOME-2B30

AMC-DOAS product over sea which varies by up to 7 kg m−2 due to the postprocessing applied to AMC-DOAS S5P TCWV.

Another exception is the variability of the difference between AMC-DOAS S5P TCWV and the S5P TCWV from SRON of

around 1.5 kg m−2 which is lower than for the other data sets due to the much stricter filtering of SRON S5P TCWV.
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The observed standard deviations are in agreement with comparison studies for the existing AMC-DOAS products (see e.g.

Noël et al., 2005; Kalakoski et al., 2016) which show a typical scatter of around 5 kg m−2. This variability arises from different

overpass times resulting in systematic changes in the atmospheric conditions due to e.g. transport processes and altering

cloud cover. The value of 5 kg m−2 can therefore be considered as a rough estimate for the natural variability of TCWV in

combination with effects from different spatial and temporal sampling. All TCWV data sets used in this study show systematic5

differences between each other which are typically smaller than this.

Especially the comparisons of the different S5P results show that there is no “best” algorithm or product for TCWV; all re-

trieval methods / spectral regions have their advantages and disadvantages. The dynamic range of the TCWV in the atmosphere

benefits from having a variety of approaches to measure this quantity, thus complementing each other. The large variability of

atmospheric water vapour requires a variety of approaches, which can complement each other.10

The parameters used here to compare AMC-DOAS TCWV and other TCWV products shows similar values which are also

found by (e.g. Van Malderen et al., 2014; Schröder et al., 2016; Schröder et al., 2018).

These studies also reveal that typical differences around 5 kg m−2 occur when comparing different TCWV data sets. The

current AMC-DOAS S5P TCWV product relies on FRESCO input data for the albedo / cloud correction and for filtering.

Therefore, changes in the input cloud product can have an effect on the derived TCWV. This problem can be seen e.g. in the15

jump observed in the S5P product from MPIC, which originates in an algorithm change of the used cloud product. AMC-

DOAS S5P TCWV also shows a general increase of on average more than 2 kg m−2 at the end of November. This is caused by

a version change of the FRESCO cloud product. It is planned to investigate possibilities to retrieve the required cloud properties

independently from external data, e.g. by a FRESCO-like cloud detection scheme from the oxygen B band. This would make

the AMC-DOAS retrieval method even more independent from external data sets.20

In summary, the AMC-DOAS method has proved to be a powerful and fast tool to retrieve TCWV from large data sets.

The application to TROPOMI/S5P data provides spatially highly resolved results, which allows to investigate very small scale

features in the TCWV.

Data availability. The AMC-DOAS TCWV products for S5P and GOME-2 are available on request from the authors. The MPIC TCWV

are also available on request from the authors. The SRON S5P H2O version 9_1 data are available under ftp://ftp.sron.nl/open-access-data-25

2/TROPOMI/tropomi/hdo/9_1/. The SSMIS data are available at http://www.remss.com/missions/ssmi/.

The ERA5 reanalysis data were obtained directly from ECMWF but are also available from the Copernicus Atmosphere Monitoring

Service (https://www.doi.org/10.24381/cds.bd0915c6, last access 21 April 2021)

Author contributions. Tobias Küchler applied the AMC-DOAS retrieval (including postprocessing) to S5P data. Stefan Noël developed the

AMC-DOAS method and provided also the AMC-DOAS GOME-2B TCWV data. Andreas Schneider and Tobias Borsdorff produced and30

provided the SRON S5P TCWV data. Thomas Wagner and Christian Borger provided MPIC TCWV data for S5P. All authors including

Heinrich Bovensmann and John P. Burrows contributed to the preparation of the manuscript.

30

https://doi.org/10.5194/amt-2021-144
Preprint. Discussion started: 2 June 2021
c© Author(s) 2021. CC BY 4.0 License.



Competing interests. Thomas Wagner is the executive editor of AMT.

Acknowledgements. SSMIS data are produced by Remote Sensing Systems. Data are available at www.remss.com/missions/ssmi. We thank

ESA for provision of Level 1 data and Level 2 FRESCO data from Sentinel-5p. The ERA5 data are provided by European Centre for Medium

Range Forecasts. The SRON TROPOMI data processing was carried out on the Dutch national e-infrastructure with the support of the SURF

Cooperative. GMTED2010 data are provided by the U.S Geological Survey.5

Special thanks goes to the University of Bremen which funded this work. All calculations reported here were performed on HPC facilities

of the IUP, University of Bremen, funded under DFG/FUGG grant INST 144/379-1 and INST 144/493-1.

31

https://doi.org/10.5194/amt-2021-144
Preprint. Discussion started: 2 June 2021
c© Author(s) 2021. CC BY 4.0 License.



References

Allan, R., Liu, C., Zahn, M., Lavers, D., Koukouvagias, E., and Bodas-Salcedo, A.: Physically Consistent Responses of the Global Atmo-

spheric Hydrological Cycle in Models and Observations, Survey in Geophysics, 35, 533–552, https://doi.org/10.1007/s10712-012-9213-z,

2014.

Anderson, G.: FASCODE/MODTRAN/LOWTRAN: Paste/Present/Future, in: 18th Annual Review Conference on Atmospheric Models,5

1995.

Apituley, A., Pedergnana, M., Sneep, M., Veefkind, J. P., Loyola, D., and Wang, P.: Sentinel-5 precursor/TROPOMI Level 2 Product User

Manual KNMI level 2 support products, Tech. rep., Royal Netherlands Meteorological Institute, 2017.

Bennartz, R. and Fischer, J.: Retrieval of columnar water vapour over land from backscattered solar radiation using the Medium Resolution

Imaging Spectrometer, Remote Sensing of Environment, 78, 274–283, https://doi.org/https://doi.org/10.1016/S0034-4257(01)00218-8,10

https://www.sciencedirect.com/science/article/pii/S0034425701002188, 2001.

Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of at-

mospheric water vapor using the global positioning system, Journal of Geophysical Research: Atmospheres, 97, 15 787–15 801,

https://doi.org/10.1029/92JD01517, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01517, 1992.

Borger, C., Beirle, S., Dörner, S., Sihler, H., and Wagner, T.: Total Column Water Vapour Retrieval from S-5P/TROPOMI in the Visi-15

ble Blue Spectral Range, Atmospheric Measurement Techniques Discussions, 2020, 1–69, https://doi.org/10.5194/amt-2019-492, https:

//www.atmos-meas-tech-discuss.net/amt-2019-492/, 2020.

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P.,

Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, book section 7, p. 571–658, Cambridge University Press,

Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, www.climatechange2013.org,20

2013.

Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eich-

mann, K.-U., Eisinger, M., and Perner, D.: The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Re-

sults, Journal of the Atmospheric Sciences, 56, 151–175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2, 1999.

Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data (GMTED2010), Tech. Rep. 2011-1073, U.S. Geological25

Survey, 2011.

Diedrich, H., Preusker, R., Lindstrot, R., and Fischer, J.: Retrieval of daytime total columnar water vapour from MODIS measurements over

land surfaces, Atmospheric Measurement Techniques, 8, 823–836, https://doi.org/10.5194/amt-8-823-2015, https://amt.copernicus.org/

articles/8/823/2015/, 2015.

Gaffen, D. J. and Elliott, W. P.: Column Water Vapor Content in Clear and Cloudy Skies, Journal of Climate, 6, 2278–2287,30

https://doi.org/10.1175/1520-0442(1993)006<2278:CWVCIC>2.0.CO;2, 1993.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-

mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,

Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Vil-35

laume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/https://doi.org/10.1002/qj.3803, https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803, 2020.

32

https://doi.org/10.5194/amt-2021-144
Preprint. Discussion started: 2 June 2021
c© Author(s) 2021. CC BY 4.0 License.



Kalakoski, N., Kujanpää, J., Sofieva, V., Tamminen, J., Grossi, M., and Valks, P.: Validation of GOME-2/Metop total column water vapour

with ground-based and in situ measurements, Atmospheric Measurement Techniques, 9, 1533–1544, https://doi.org/10.5194/amt-9-1533-

2016, https://amt.copernicus.org/articles/9/1533/2016/, 2016.

Kiehl, J. T. and Trenberth, K. E.: Earth’s Annual Global Mean Energy Budget, Bulletin of the American Meteorological Society, 78, 197–208,

https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2, 1997.5

Koelemeijer, R. B. A., Stammes, P., Hovenier, J. W., and de Haan, J. F.: A fast method for retrieval of cloud parameters using oxygen A

band measurements from the Global Ozone Monitoring Experiment, Journal of Geophysical Research: Atmospheres, 106, 3475–3490,

https://doi.org/10.1029/2000JD900657, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JD900657, 2001.

Kunkee, D. B., Poe, G. A., Boucher, D. J., Swadley, S. D., Hong, Y., Wessel, J. E., and Uliana, E. A.: Design and Evaluation of the First

Special Sensor Microwave Imager/Sounder, IEEE Transactions on Geoscience and Remote Sensing, 46, 863–883, 2008.10

Lindstrot, R., Preusker, R., Diedrich, H., Doppler, L., Bennartz, R., and Fischer, J.: 1D-Var retrieval of daytime total columnar water vapour

from MERIS measurements, Atmospheric Measurement Techniques, 5, 631–646, https://doi.org/10.5194/amt-5-631-2012, https://amt.

copernicus.org/articles/5/631/2012/, 2012.

Melsheimer, C. and Heygster, G.: Improved Retrieval of Total Water Vapor Over Polar Regions From AMSU-B Microwave Radiometer

Data, IEEE Transactions on Geoscience and Remote Sensing, 46, 2307–2322, https://doi.org/10.1109/TGRS.2008.918013, 2008.15

Mitchell, J. F. B.: The “Greenhouse” effect and climate change, Reviews of Geophysics, 27, 115–139,

https://doi.org/10.1029/RG027i001p00115, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RG027i001p00115, 1989.

Munro, R., Eisinger, M., Anderson, C., Callies, J., Corpaccioli, E., Lang, R., Lefebvre, A., Livschitz, Y., and Albinana, A. P.: GOME-2 on

MetOp, in: Proc. of The 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland, vol. 1216, p. 48, 2006.

Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., Huckle, R., Lacan, A., Grzegorski, M., Holdak, A., Kokhanovsky, A.,20

Livschitz, J., and Eisinger, M.: The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data

processing

– an overview, Atmospheric Measurement Techniques, 9, 1279–1301, https://doi.org/10.5194/amt-9-1279-2016, https://www.

atmos-meas-tech.net/9/1279/2016/, 2016.

Noël, S., Buchwitz, M., Bovensmann, H., and Burrows, J. P.: First retrieval of global water vapour column amounts from SCIAMACHY25

measurements, Atmos. Chem. Phys., 4, 111–125, 2005a.

Noël, S., Buchwitz, M., Bovensmann, H., and Burrows, J. P.: Validation of SCIAMACHY AMC-DOAS water vapour columns, Atmos.

Chem. Phys., 5, 1835–1841, 2005b.

Noël, S., Buchwitz, M., Bovensmann, H., and Burrows, J. P.: Validation of SCIAMACHY AMC-DOAS water vapour columns, Atmospheric

Chemistry and Physics, 5, 1835–1841, https://doi.org/10.5194/acp-5-1835-2005, https://acp.copernicus.org/articles/5/1835/2005/, 2005.30

Noël, S., Mieruch, S., Bovensmann, H., and Burrows, J. P.: Preliminary results of GOME-2 water vapour retrievals and first applications in po-

lar regions, Atmospheric Chemistry and Physics, 8, 1519–1529, https://doi.org/10.5194/acp-8-1519-2008, https://www.atmos-chem-phys.

net/8/1519/2008/, 2008.

Noel, V., Chepfer, H., Chiriaco, M., and Yorks, J.: The diurnal cycle of cloud profiles over land and ocean between 51◦ S and 51◦ N,

seen by the CATS spaceborne lidar from the International Space Station, Atmospheric Chemistry and Physics, 18, 9457–9473,35

https://doi.org/10.5194/acp-18-9457-2018, https://acp.copernicus.org/articles/18/9457/2018/, 2018.

33

https://doi.org/10.5194/amt-2021-144
Preprint. Discussion started: 2 June 2021
c© Author(s) 2021. CC BY 4.0 License.



Noël, S., Buchwitz, M., Bovensmann, H., Hoogen, R., and Burrows, J. P.: Atmospheric water vapor amounts retrieved from GOME satellite

data, Geophysical Research Letters, 26, 1841–1844, https://doi.org/10.1029/1999GL900437, https://agupubs.onlinelibrary.wiley.com/doi/

abs/10.1029/1999GL900437, 1999.

Perner, D. and Platt, U.: Detection of nitrous acid in the atmosphere by differential optical absorption, Geophysical Research Letters, 6,

917–920, https://doi.org/10.1029/GL006i012p00917, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GL006i012p00917, 1979.5

Preusker, R., Carbajal Henken, C., and Fischer, J.: Retrieval of Daytime Total Column Water Vapour from OLCI Measurements over Land

Surfaces, Remote Sensing, 13, https://doi.org/10.3390/rs13050932, https://www.mdpi.com/2072-4292/13/5/932, 2021.

Ren, H., Du, C., Liu, R., Qin, Q., Yan, G., Li, Z.-L., and Meng, J.: Atmospheric water vapor retrieval from Landsat 8 thermal infrared

images, Journal of Geophysical Research: Atmospheres, 120, 1723–1738, https://doi.org/https://doi.org/10.1002/2014JD022619, https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JD022619, 2015.10

Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M., and Businger, S.: Sensing atmospheric water vapor

with the global positioning system, Geophysical Research Letters, 20, 2631–2634, https://doi.org/10.1029/93GL02935, https://agupubs.

onlinelibrary.wiley.com/doi/abs/10.1029/93GL02935, 1993.

Rocken, C., Hove, T. V., Johnson, J., Solheim, F., Ware, R., Bevis, M., Chiswell, S., and Businger, S.: GPS/STORM—GPS Sensing of

Atmospheric Water Vapor for Meteorology, Journal of Atmospheric and Oceanic Technology, 12, 468–478, https://doi.org/10.1175/1520-15

0426(1995)012<0468:GSOAWV>2.0.CO;2, 1995.

Rothman, L., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L., Carleer, M., Chackerian, C., Chance, K., Coudert, L.,

Dana, V., Devi, V., Flaud, J.-M., Gamache, R., Goldman, A., Hartmann, J.-M., Jucks, K., Maki, A., Mandin, J.-Y., Massie, S., Or-

phal, J., Perrin, A., Rinsland, C., Smith, M., Tennyson, J., Tolchenov, R., Toth, R., Vander Auwera, J., Varanasi, P., and Wagner,

G.: The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 96, 139–204,20

https://doi.org/https://doi.org/10.1016/j.jqsrt.2004.10.008, https://www.sciencedirect.com/science/article/pii/S0022407305001081, 2005.

Rothman, L., Gordon, I., Babikov, Y., Barbe, A., Benner, D. C., Bernath, P., Birk, M., Bizzocchi, L., Boudon, V., Brown, L., Campargue,

A., Chance, K., Cohen, E., Coudert, L., Devi, V., Drouin, B., Fayt, A., Flaud, J.-M., Gamache, R., Harrison, J., Hartmann, J.-M., Hill,

C., Hodges, J., Jacquemart, D., Jolly, A., Lamouroux, J., Roy, R. L., Li, G., Long, D., Lyulin, O., Mackie, C., Massie, S., Mikhailenko,

S., Müller, H., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E., Richard, C., Smith, M., Starikova, E.,25

Sung, K., Tashkun, S., Tennyson, J., Toon, G., Tyuterev, V., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, Journal

of Quantitative Spectroscopy and Radiative Transfer, 130, 4 – 50, https://doi.org/https://doi.org/10.1016/j.jqsrt.2013.07.002, http://www.

sciencedirect.com/science/article/pii/S0022407313002859, hITRAN2012 special issue, 2013.

Rozanov, A., Rozanov, V., Buchwitz, M., Kokhanovsky, A., and Burrows, J.: SCIATRAN 2.0 – A new radiative trans-

fer model for geophysical applications in the 175–2400nm spectral region, Advances in Space Research, 36, 1015–1019,30

https://doi.org/https://doi.org/10.1016/j.asr.2005.03.012, https://www.sciencedirect.com/science/article/pii/S0273117705002887, atmo-

spheric Remote Sensing: Earth’s Surface, Troposphere, Stratosphere and Mesosphere- I, 2005.

Rozanov, V., Rozanov, A., Kokhanovsky, A., and Burrows, J.: Radiative transfer through terrestrial atmosphere and

ocean: Software package SCIATRAN, Journal of Quantitative Spectroscopy and Radiative Transfer, 133, 13 – 71,

https://doi.org/https://doi.org/10.1016/j.jqsrt.2013.07.004, 2014.35

Scheepmaker, R. A., aan de Brugh, J., Hu, H., Borsdorff, T., Frankenberg, C., Risi, C., Hasekamp, O., Aben, I., and Landgraf, J.: HDO and

H2O total column retrievals from TROPOMI shortwave infrared measurements, Atmospheric Measurement Techniques, 9, 3921–3937,

https://doi.org/10.5194/amt-9-3921-2016, https://amt.copernicus.org/articles/9/3921/2016/, 2016.

34

https://doi.org/10.5194/amt-2021-144
Preprint. Discussion started: 2 June 2021
c© Author(s) 2021. CC BY 4.0 License.



Schlüssel, P. and Emery, W. J.: Atmospheric water vapour over oceans from SSM/I measurements, Int. J. Remote Sens., 11, 753–766,

https://doi.org/10.1080/01431169008955055, 1990.

Schlüssel, P. and Goldberg, M.: Retrieval of atmospheric temperature and water vapour from IASI measurements in partly cloudy situations,

Advances in Space Research, 29, 1703–1706, https://doi.org/https://doi.org/10.1016/S0273-1177(02)00101-1, https://www.sciencedirect.

com/science/article/pii/S0273117702001011, 2002.5

Schneider, A., Borsdorff, T., aan de Brugh, J., Aemisegger, F., Feist, D. G., Kivi, R., Hase, F., Schneider, M., and Landgraf, J.: First data set

of H2O/HDO columns from the Tropospheric Monitoring Instrument (TROPOMI), Atmospheric Measurement Techniques, 13, 85–100,

https://doi.org/10.5194/amt-13-85-2020, https://amt.copernicus.org/articles/13/85/2020/, 2020.

Schröder, M., Lockhoff, M., Fell, F., Forsythe, J., Trent, T., Bennartz, R., Borbas, E., Bosilovich, M. G., Castelli, E., Hersbach, H., Kachi,

M., Kobayashi, S., Kursinski, E. R., Loyola, D., Mears, C., Preusker, R., Rossow, W. B., and Saha, S.: The GEWEX Water Vapor10

Assessment archive of water vapour products from satellite observations and reanalyses, Earth System Science Data, 10, 1093–1117,

https://doi.org/10.5194/essd-10-1093-2018, https://essd.copernicus.org/articles/10/1093/2018/, 2018.

Schröder, M., Lockhoff, M., Forsythe, J. M., Cronk, H. Q., Haar, T. H. V., and Bennartz, R.: The GEWEX Water Vapor Assessment: Results

from Intercomparison, Trend, and Homogeneity Analysis of Total Column Water Vapor, Journal of Applied Meteorology and Climatology,

55, 1633 – 1649, https://doi.org/10.1175/JAMC-D-15-0304.1, https://journals.ametsoc.org/view/journals/apme/55/7/jamc-d-15-0304.1.15

xml, 2016.

Siddans, R.: S5P-NPP Cloud Processor ATBD, Tech. rep., Rutherford Appleton Laboratory, 2016.

Sobrino, J. A., Kharraz, J. E., and Li, Z.-L.: Surface temperature and water vapour retrieval from MODIS data, International Journal of

Remote Sensing, 24, 5161–5182, https://doi.org/10.1080/0143116031000102502, https://doi.org/10.1080/0143116031000102502, 2003.

Sohn, B.-J. and Bennartz, R.: Contribution of water vapor to observational estimates of longwave cloud radiative forcing, Journal of Geo-20

physical Research: Atmospheres, 113, https://doi.org/10.1029/2008JD010053, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2008JD010053, 2008.

Staelin, D., Kunzi, K., Pettyjohn, R., Poon, R., Wilcox, R., and Waters, J.: Remote sensing of atmospheric water vapor and liquid water with

the Nimbus 5 microwave spectrometer, Journal of Applied Meteorology, 15, 1204–1214, 1976.

van Hees, Richard, M., Tol, P. J. J., Cadot, S., Krijger, M., Persijn, S. T., van Kempen, Tim, A., Snel, R., Aben, I., and Hoogeveen,25

R. W. M.: Determination of the TROPOMI-SWIR instrument spectral response function, Atmospheric Measurement Techniques, 11,

3917–3933, https://search.proquest.com/docview/2064258472?accountid=14136, copyright - © 2018. This work is published under

https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this

content in accordance with the terms of the License; Zuletzt aktualisiert - 2018-07-05, 2018.

Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H., and Bruyninx, C.: A30

multi-site intercomparison of integrated water vapour observations for climate change analysis, Atmospheric Measurement Techniques,

7, 2487–2512, https://doi.org/10.5194/amt-7-2487-2014, https://amt.copernicus.org/articles/7/2487/2014/, 2014.

Veefkind, J., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H., de Haan, J., Kleipool, Q., van

Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R.,

Visser, H., and Levelt, P.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the at-35

mospheric composition for climate, air quality and ozone layer applications, Remote Sensing of Environment, 120, 70 – 83,

https://doi.org/https://doi.org/10.1016/j.rse.2011.09.027, http://www.sciencedirect.com/science/article/pii/S0034425712000661, the Sen-

tinel Missions - New Opportunities for Science, 2012.

35

https://doi.org/10.5194/amt-2021-144
Preprint. Discussion started: 2 June 2021
c© Author(s) 2021. CC BY 4.0 License.



Wagner, T., Heland, J., Zöger, M., and Platt, U.: A fast H2O total column density product from GOME – Validation with in-situ aircraft

measurements, Atmospheric Chemistry and Physics, 3, 651–663, https://doi.org/10.5194/acp-3-651-2003, https://www.atmos-chem-phys.

net/3/651/2003/, 2003.

Wagner, T., Beirle, S., Sihler, H., and Mies, K.: A feasibility study for the retrieval of the total column precipitable water vapour from satellite

observations in the blue spectral range, Atmospheric Measurement Techniques, 6, 2593–2605, https://doi.org/10.5194/amt-6-2593-2013,5

https://www.atmos-meas-tech.net/6/2593/2013/, 2013.

Wang, H., Liu, X., Chance, K., González Abad, G., and Chan Miller, C.: Water vapor retrieval from OMI visible spectra, Atmospheric Mea-

surement Techniques, 7, 1901–1913, https://doi.org/10.5194/amt-7-1901-2014, https://www.atmos-meas-tech.net/7/1901/2014/, 2014.

Wang, P., Stammes, P., van der A, R., Pinardi, G., and van Roozendael, M.: FRESCO+: an improved O2 A-band cloud retrieval algorithm

for tropospheric trace gas retrievals, Atmospheric Chemistry and Physics, 8, 6565–6576, https://doi.org/10.5194/acp-8-6565-2008, https:10

//www.atmos-chem-phys.net/8/6565/2008/, 2008.

Wentz, F. J.: A well-calibrated ocean algorithm for special sensor microwave / imager, Journal of Geophysical Research: Oceans, 102,

8703–8718, https://doi.org/10.1029/96JC01751, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JC01751, 1997.

Wentz, J., Hilburn, K., and Smith, D.: Remote Sensing Systems DMSP SSMIS Daily Environmental Suite on 0.25 deg grid, Version 7,

Remote Sensing Systems, Santa Rosa, CA. Avaiable online at www.remss.com/missions/ssmi. Accessed 13 April 2021, 2012.15

36

https://doi.org/10.5194/amt-2021-144
Preprint. Discussion started: 2 June 2021
c© Author(s) 2021. CC BY 4.0 License.


